Width is not additive
نویسندگان
چکیده
منابع مشابه
P-value: What is and what is not
The misinterpretation and misuse of p-value have been increasing for decades. In March 2016, the American Statistical Association released a statement to warn about the use and interpretation of p-value. In this study, we provided a definition and discussion of p-value and emphasized the importance of its accurate interpretation.
متن کاملEvery null - additive set is meager - additive †
§1. The basic definitions and the main theorem. 1. Definition. (1) We define addition on 2 as addition modulo 2 on each component, i.e., if x, y, z ∈ 2 and x+ y = z then for every n we have z(n) = x(n) + y(n) (mod 2). (2) For A,B ⊆ 2 and x ∈ 2 we set x + A = {x + y : y ∈ A}, and we define A + B similarly. (3) We denote the Lebesgue measure on 2 with μ. We say that X ⊆ 2 is null-additive if for ...
متن کاملNonconglomerability for countably additive Measures that are not κ-additive
Let κ be an uncountable cardinal. Using the theory of conditional probability associated with de Finetti (1974) and Dubins (1975), subject to several structural assumptions for creating sufficiently many measurable sets, and assuming that κ is not a weakly inaccessible cardinal, we show that each probability that is not κ-‐ additive has conditional probabilities that fail to be conglomerable i...
متن کاملLog-normal distribution from a process that is not multiplicative but is additive.
The central limit theorem ensures that a sum of random variables tends to a Gaussian distribution as their total number tends to infinity. However, for a class of positive random variables, we find that the sum tends faster to a log-normal distribution. Although the sum tends eventually to a Gaussian distribution, the distribution of the sum is always close to a log-normal distribution rather t...
متن کاملRank-width is less than or equal to branch-width
We prove that the rank-width of the incidence graph of a graph G is either equal to or exactly one less than the branch-width of G, unless the maximum degree of G is 0 or 1. This implies that rank-width of a graph is less than or equal to branch-width of the graph unless the branch-width is 0. Moreover, this inequality is tight.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometry & Topology
سال: 2013
ISSN: 1364-0380,1465-3060
DOI: 10.2140/gt.2013.17.93